

Definition of high risk of disease recurrence following curative treatment for early-stage hepatocellular carcinoma: a comparison of three approaches.

Célia Giotti (1), Philippe Merle (2), Cyril Esnault (1), Jean Marc Phelip (3), Manoel Moreau (1), Arthur Senigout (1), Manel Dhaoui (1), Majda Le Foll-Elfounini (1), Danko Stamenic (1)

(1) Roche, Boulogne-Billancourt, France, (2) CHU Lyon, Lyon, France, (3) CHU Saint Etienne, Saint Etienne, France

Background

Hepatocellular carcinoma (HCC):

- Around 80% of primary liver cancer cases and is the third leading cause of cancer-related mortality globally (1).
- Early detection offers the possibility of disease curative with surgical resection (SR) or percutaneous ablation (PA), with promising survival benefits for early-stage HCC patients.
- Disease recurrence (DR) following SR/PA remains a main challenge, with rates reaching up to 70% within five years (2).

Challenges:

- Real-world data from early HCC patients in France are sparse
- No consensus on the definition of high-risk (HR) of DR following SR/PA.

Objectives:

- (i) Describe the characteristics of early HCC patients who received SR/PA in two regional centers in France
- (ii) Explore and compare three different approaches in defining HR of disease recurrence (two existing definitions + a data-driven definition)

Methods

Data:

- A retrospective cohort of patients with early-stage HCC who received their first SR or PA between 2017 and 2021 in two French regional centers - CHU Lyon and CHU Saint-Etienne.
- Inclusion at the date of their first SR or PA and follow-up for up to two years (until December 2023 at latest)
- Variables collected at baseline: socio-demographic, clinical and biological characteristics, HCC etiology and related comorbidities.

High risk of disease recurrence:

- Two existing definitions for high risk (HR) of DR, one from the IMbrave-050 (IM) clinical trial (3) and another based on the recommendations of the Study's Scientific Committee (SC). Both definitions were based on the following variables: tumor type (infiltrative vs. nodular) and size, the number and location of tumor nodules, the type of vascular invasion (microvascular vs. macrovascular), tumor differentiation grade, and alpha-fetoprotein levels.
- A third, data-driven definition of HRDR developed using machine learning methods

Analyses:

- Median and two-year recurrence-free survival (RFS) by HRDR status based on SC and IM definitions were estimated using Kaplan-Meier method. RFS was defined as a time from the first CT until the death or disease recurrence.

- The performance of the three definitions (sensitivity, specificity and overall accuracy) in classifying the patients in the study was estimated with respect to their observed DR status.

Machine learning method:

- Penalized Logistic Regression (Lasso) was used to identify variables associated with DR. Included were all aforementioned variables from the existing IM and SC definitions + sex, BMI, smoking status, diagnosed cirrhosis (yes/no), diagnosed diabetes (yes/no), hepatitis B (yes/no), hepatitis C (yes/no), hemochromatosis (yes/no), NAFLD, ASAT, ALAT, Gamma GT, tumor grade and macrotrabecular HCC (yes/no). Model robustness was ensured using cross-validation.

Results

Table 1: Baseline characteristics of patients included in the study

Characteristics	Patients			
	Overall N=371	Curative treatment groups		
		Ablated patients N=237	Resected patients N=117	Ablated and resected patients N=17
Average age in years (SD)	67.3 (10.4)	67.8 (9.8)	65.9 (11.5)	70.0 (11.0)
Male Sex	317 (85.4%)	209 (88.2%)	93 (79.5%)	15 (88.2%)
BMI (kg/m ²)				
<25	98 (27.4%)	60 (26.0%)	34 (30.9%)	4 (23.5%)
25-29.9	133 (37.2%)	92 (39.8%)	37 (33.6%)	4 (23.5%)
≥30	128 (35.5%)	79 (34.2%)	39 (35.4%)	9 (53.0%)
Comorbidities diagnosis				
Cirrhosis	199 (53.6%)	147 (62.0%)	45 (38.5%)	7 (41.2%)
Suspected cirrhosis	88 (23.7%)	63 (26.6%)	17 (14.5%)	8 (47.1%)
Diabetes	166 (46.2%)	114 (48.3%)	49 (46.2%)	3 (17.6%)
Dyslipidemia	38 (10.6%)	25 (10.6%)	12 (11.3%)	1 (5.9%)
Smoking habits				
Former	141 (38.0%)	94 (39.7%)	42 (35.9%)	5 (29.4%)
Current	76 (20.5%)	56 (23.6%)	17 (14.5%)	3 (17.6%)
Alcohol consumption				
Weaned	155 (41.8%)	102 (43.0%)	45 (38.5%)	8 (47.1%)
Current	99 (26.7%)	70 (29.5%)	26 (22.2%)	3 (17.6%)
Liver Disease Etiology				
Hepatitis C only	53 (14.3%)	36 (15.2%)	13 (11.1%)	4 (23.5%)
Hepatitis B only	18 (4.9%)	11 (4.6%)	6 (5.1%)	1 (5.9%)
Alcohol only	35 (9.4%)	25 (10.5%)	10 (8.5%)	0 (0.0%)
NAFLD only	31 (8.4%)	21 (8.9%)	9 (7.7%)	1 (5.9%)
Tumor type (N=367)				
Nodular	344 (93.7%)	218 (93.5%)	110 (97.3%)	16 (94.0%)
Infiltrative	18 (4.9%)	10 (4.3%)	7 (2.7%)	1 (7.0%)
Mixed (nodular and infiltrative)	5 (1.4%)	5 (2.1%)	0 (0.0%)	0 (0.0%)
Microvascular invasion	37 (10.0%)	15 (6.3%)	22 (19.0%)	0 (0.0%)
Macrovacular invasion	16 (4.3%)	1 (0.4%)	15 (13.0%)	0 (0.0%)
Disease recurrence within two years after the first SR/PA	174 (46.9%)	112 (47.3%)	52 (44.4%)	10 (58.8%)

Represented are n(%) unless indicated otherwise; SD, standard deviation; BMI, body mass index; NAFLD, non-alcoholic fatty liver disease; SR, surgical resection; PA, percutaneous ablation

Table 2: High risk of disease recurrence according to the two existing definitions

High risk of disease recurrence n(%)	Patients			
	Overall N=371	Curative treatment groups		
		Ablated patients N=237	Resected patients N=117	Ablated and resected patients N=17
IMbrave050	206 (55.5%)	135 (57%)	61 (52%)	10 (59%)
Scientific Committee (SC)	195 (52.6%)	103 (43%)	84 (72%)	8 (47%)
IMbrave-050 only	55 (14.8%)	52 (22%)	1 (0.9%)	2 (12%)
Scientific Committee only	44 (11.9%)	20 (8.4%)	24 (21%)	0 (0%)
IMbrave050 AND Scientific Committee	151 (40.7%)	83 (35%)	60 (51%)	8 (47%)
IMbrave-050 OR Scientific Committee	250 (67.4%)	155 (65%)	85 (73%)	10 (59%)
Not at high-risk (neither SC or IMbrave050)	121 (32.6%)	82 (35%)	32 (27%)	7 (41%)

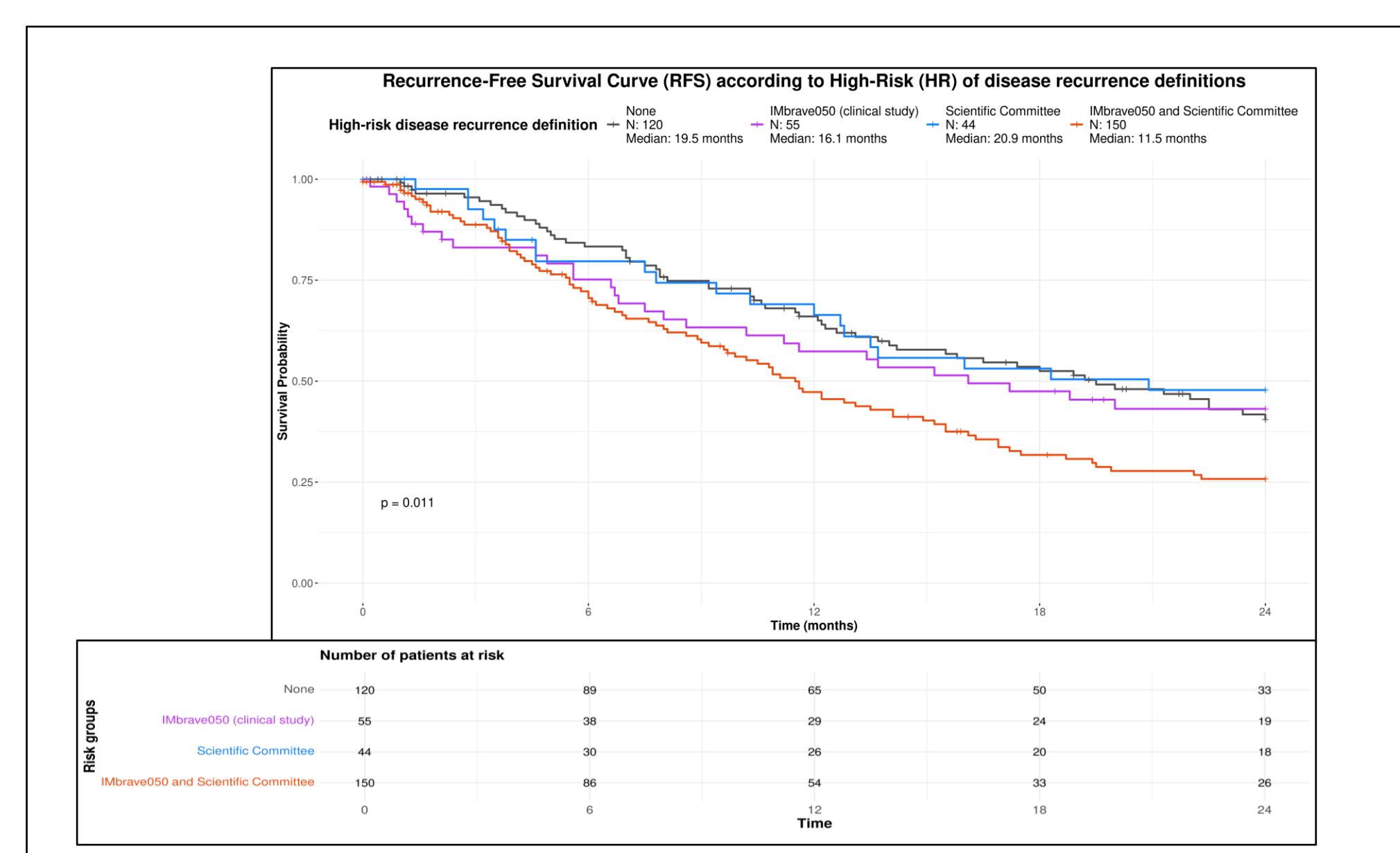


Figure 1: Recurrence-free survival according to different definitions of high risk of disease recurrence

Table 3: Performance of the three definitions for high risk of disease recurrence or death

High-risk of disease recurrence definition	Metrics			
	Accuracy	Sensitivity	Specificity	AUC
IMbrave-050 (IM)	0.53	0.58	0.48	N.A
Comité Scientifique (SC)	0.55	0.55	0.54	N.A
IM and SC	0.54	0.44	0.65	N.A
Data-driven (Ablation)	0.63	0.72	0.54	0.67
Data-driven (Resection)	0.63	0.69	0.53	0.65

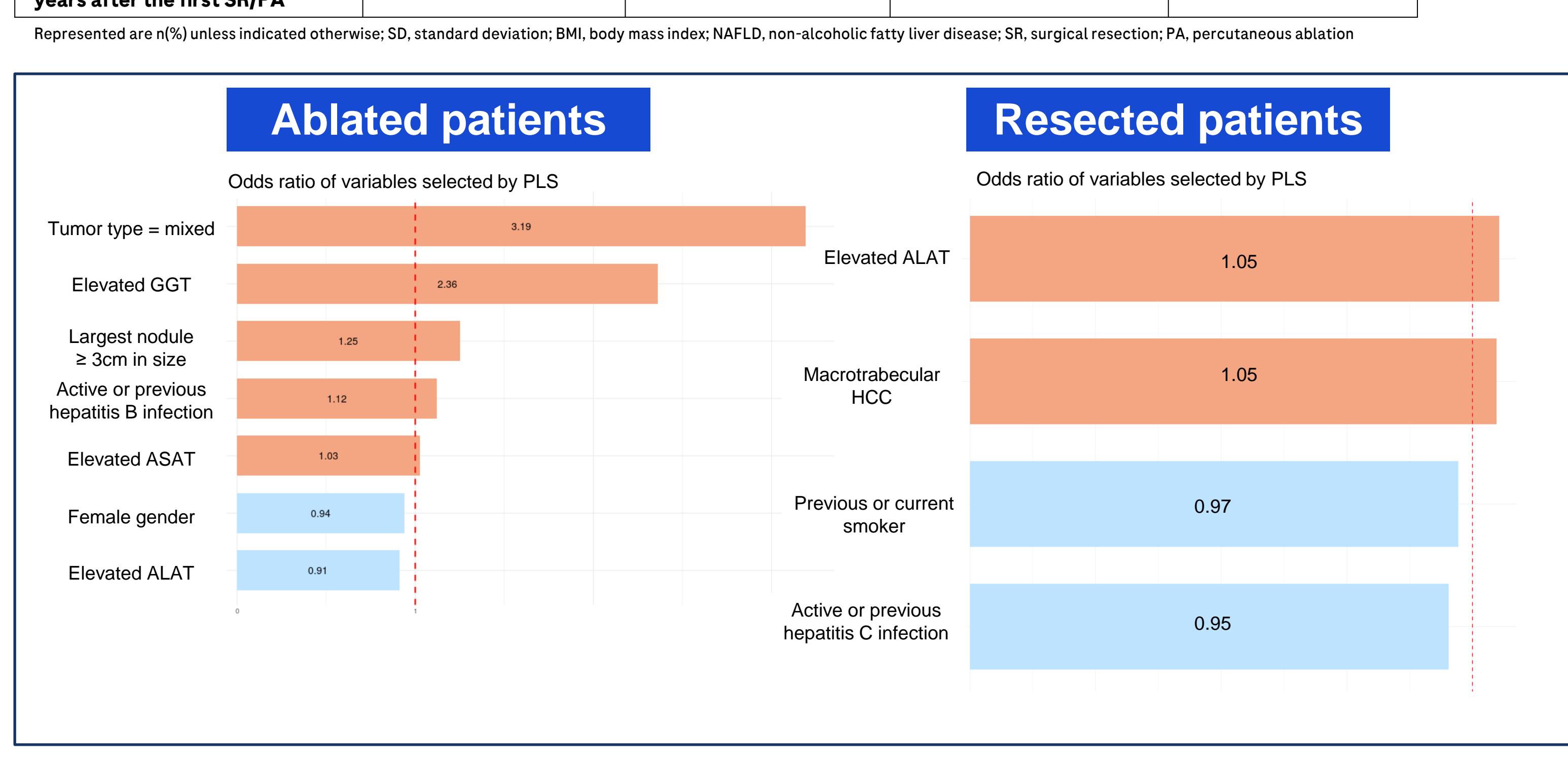


Figure 2: Variables selected in Penalised (Lasso) Logistic Regression (PLS) model for disease recurrence or death

Conclusion

While the two current definitions of high risk of disease recurrence (HRDR) following surgical resection or percutaneous ablation for HCC incorporate similar variables, a considerable discrepancy exists, with over 40% of patients classified as HRDR by only one definition. A data-driven approach reduced the number of variables defining HRDR and improved patient classification compared to existing definitions, offering a promising alternative. We need further analyses to confirm these results and evaluate how clinicians can use them for decision-making.

References

(1) Villanueva A. Hepatocellular Carcinoma. *N. Engl. J. Med.* 380(15), 1450–1462 (2019). (2) Forner A, Reig M, Bruix J. Hepatocellular carcinoma. *Lancet* 391(10127), 1301–1314 (2018). (3) Qin S. et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial. *Lancet*. 2023 Nov 18;402(10415):1835–1847.